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1 Introduction

The Electromagnetic Transients Program (EMTP) and Alternative Transients Program (ATP)

contain several modules which calculate the impedance parameters (R′, G′, L′, andC ′, where the

prime indicates per unit length values) of overhead or buried power transmission cables. The calcu-

lations in EMTP and ATP are almost entirely based on Carson’s1926 analysis[3] of ground effects

on TEM-like modes propagating at low frequencies. In particular, Carson’s analysis neglects dis-

placement currents in the ground and radiation from the power lines, both of which can become

important at the high frequencies characteristic of broadband over power line (BBPL) applications.

ATP and EMTP will be referred to below jointly as A/EM-TP.

2 ATP interface

A useful interface to A/EM-TP would provide frequency-dependent complex values for the

distributed impedanceZ ′ = R′ + iωL′ and distributed admittanceY ′ = G′ + iωC ′ for a single line

above a ground plane of relative dielectric constantǫ2 = ǫr − iσ/ωǫ0, and for line pairs above that

ground plane. HereR′, G′, L′, andC ′are the resistance inΩ/m, conductance inS/m, inductance

in H/m, and capacitance inF/m, respectively, andσ is the conductivity of the ground.

A/EM-TP uses these distributed impedance and admittance values to construct impedance ma-

trices, from which current distributions on the coupled power lines are calculated. For a single

wire above an imperfectly conducting ground, the voltage and current are assumed to be described

by

dV

dx
= −Z ′I

dI

dx
= −Y ′V

so that

d22V

dx2
= Y ′Z ′V

The complex propagation constantΓ is then given by

Γ2 = Y ′Z ′
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and the characteristic impedance of the transmission line is

Z0 =

√

Z ′

Y ′
.

A/EM-TP also considers pairs of wires above ground, for which the impedance and admittance

equations generalize to

dV1

dx
= −Z ′

11
I1 − Z ′

12
I2 ,

dV2

dx
= −Z ′

21
I1 − Z ′

22
I2 ,

dI1

dx
= −Y ′

11
V1 − Y ′

12
V2 ,

dI2

dx
= −Y ′

21
V1 − Y ′

22
V2 .

From the single wire and wire pair impedances, A/EM-TP constructs the distributed impedance

matrix for multiple overhead power transmission lines, based on the distances between the wires

and their height above the ground. The code does not attempt to include effects of bends, jogs,

or topography (hills or valleys) – only wire-to-wire distances and wire-to-ground distances, so an

extension to higher frequencies is limited in how exact it can or needs to be.

3 Geometry

The papers discussed in what follows use several different Cartesian coordinate systems. We

will here translate their discussions to the same coordinate system in which thez-axis is vertical,

the ground is atz ≤ 0 in thex − y plane, and individual wires run parallel to thex-axis atz = hk

(for thekth wire).

4 Carson’s transmission line

Carson neglectsEy, Ez, andHx in the ground, and assumes that the displacement currentǫ2
∂Ex

∂t

is much less then the conductive currentσEx in the ground.

5 Sommerfeld’s Hertz dipole

Sommerfeld[1] provides an exact solution for the fields driven by a Hertz dipole above an

imperfectly conducting earth. The Hertz dipole is an infinitesimal piece of constant current, which

cannot exist in reality because the current does not vanish at the ends but is nonetheless useful

for analyzing long lines above the earth. Sommerfeld derives an integral expression that adds

to the fields from the dipole atx = 0, z = h and its image atx = 0, z = −h to correct for
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ground conductivity effects. Sommerfeld’s analysis provides the basis for most finite element EM

codes, such as NEC and EIGER. Its utility for A/EM-TP is limited, however, because it requires

a numerical integration over the horizontal line of currentthat itself has to be determined self-

consistently, complicated by the numerical difficulties ofevaluating the Sommerfeld integrals with

rapidly oscillating and slowly decaying integrands.

6 Wait and D’Amore

Wait[4] developed integral expressions for the fields around an infinite horizontal wire above

a lossy ground based on an assumede−Γx (for complexΓ) dependence of the current in the wire

and the fields. The requirement that the component of the electric field parallel to the wire (Ex)

vanish at the wire radius provides the boundary condition todetermineΓ. D’Amore and Sarto[11]

extended this procedure to account for a lossy wire, and included examples of numerical solutions

of the problem. Both papers include expressions for the distributed impedance and admittance of

the wire. In [12], the authors extend the calculations to a multiconductor configuration.

The results presented in [11, 12] would appear to be exactly what is required for the interface

to a high-frequency extension of A/EM-TP. In a detailed evaluation of the results, however, we

encountered two problems. First, the decrease in attentuation above about 3 MHz seen in Fig. 2 of

[11] disagrees with numerical simulations of the (nearly) identical problem using NEC2, NEC4,

EIGER, and HFSS. The numerical simulations were constructed with lines long enough that reflec-

tions from the ends are negligible (because of attenuation)and with a central exciting voltage. The

attenuation coefficients calculated numerically donot decrease with frequency. A second problem

was realized as we were trying to understand the high frequency discrepancies between [11] and

the simulations – there is no radiation away from the wire in any of the papers mentioned in this

section. The transverse electric and magnetic fields decay exponentially away from the wire, not

as1/
√

r as would be expected for cylindrical radiation.

We believe the two problems outlined in the previous paragraph stem fro the assumptions of 1)

an infinite wire, and 2) ane−Γx dependence of the current. IfΓ has a positive real part (as it does

in the solution), then the current becomes infinite asx → −∞.

7 Reflection coefficients

The authors of NEC2 included an overly simplified approximation to Sommerfeld’s exact the-

ory, treating the ground plane as a reflecting surface, with reflection coefficient for TM fields

Rm =
ǫ2 cos θ −

[

ǫ2 − sin2 θ
]1/2

ǫ2 cos θ +
[

ǫ2 − sin2 θ
]1/2

, (1)
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whereθ is the angle of incidence with respect to the surface normal defined by a line from the

image point to the observation point. Comparison between the reflection coefficient option and

the Sommerfeld option in NEC2 or NEC4 indicates that the reflection coefficient approximation is

very poor for long single wires above a ground plane. We make our own more specific comparison

in a later section.

8 Sarabandi’s “exact image theory”

Sarabandi, et al.[15] develop a more complete treatment of fields from a horizontal Hertz dipole

based on the “exact image theory” of [16]. Definingη = 1/
√

ǫ2, α = k1/η, andβ = ηk1, they use

the reflection coefficients

Γh =
ηkz − k1

ηkz + k1

for horizontal (TE toz) polarization, and

Γv =
kz − ηk1

kz + ηk1

for vertical (TM toz) polarization.

With kρ as the integration variable (from 0 to∞), kz is defined bykz =
√

k2
1
− k2

ρ. kz is either

real or imaginary, depending on the sign ofk2

1
− k2

ρ. If kz is taken to bek1 cos θ, these reflection

coefficients are not quite the same as the usual Fresnel reflection coefficients, as for example in

Eq. (1) above, but become quite close for|ǫ2| greater thañ4.

Thex-component of the direct (from the source) electric field is

Ei
x =

−iZ0I

4πk1

(

k2

1
+

∂2

∂x2

)

eik1R0

R0

whereR0 = [(x − x′)2 + (y − y′)2 + (z − z′)2]
1/2.

Thex-component of the image electric field is

Eis
x =

−iZ0I

4πk1

(

k2

1
+

∂2

∂x2

)

eik1R

R

whereR = [(x − x′)2 + (y − y′)2 + (z + z′)2]
1/2. Thex-component of the diffracted electric field

(from ground effects) is then found to be, after some extensive derivation

Ed
x = Eis

x +
2ik1Z0I

4π

[

eik1R

R
− α

∫

∞

0

e−αξ eik1R′

R′
dξ

]

(2)

+
2iZ0Iη

4π(1 − η2)

∂2

∂x2

∫

∞

0

(

e−αξ − η2e−βξ
) eik1R′

R′
dξ (3)
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with R′ = [(x − x′)2 + (y − y′)2 + (z + z′ − iξ)2]
1/2.

The integrands in the integrals overξ of Eq. (3) are slowly varying and rapidly convergent, so

can be evaluated much more efficiently than Sommerfeld’s integrals. These fields provide a good

approximation to the exact fields from Sommerfeld’s formulation, but permit rapid and computa-

tionally efficient integration.

9 Finite-element modeling

Poljak[17] provides a clear description of how to extend thefields from a horizontal Hertz

dipole to a finite-element model of a thin wire above a lossy ground. The technique involves

solving for unknown currents in wire segments (the finite elements) that give anEx that vanishes

along the wireexcept at the single point of excitation. The combination of this finite element

modeling with theEx expressions of [15] provides the possibility of numerical evaluation of the

propagation constant and distributed impedance and admittance for single wires above ground and

wire pairs above ground – precisely what A/EM-TP requires for modeling power lines.

We have implemented this numerical procedure and are in the process of evaluating its utility

for determining power line impedances and admittances at high frequencies.
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